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Kinetic approach to the cluster liquid-gas transition

F. Calvo
Laboratoire de Physique Quantique, IRSAMC, Université Paul Sabatier,

118 Route de Narbonne, F31062 Toulouse Cedex, France

The liquid-gas transition in free atomic clusters is investigated theoretically based on simple
unimolecular rate theories and assuming sequential evaporations. A kinetic Monte Carlo scheme is
used to compute the time-dependent properties of clusters undergoing multiple dissociations, and
two possible definitions of the boiling point are proposed, relying on the cluster or gas temperature.
This numerical approach is supported by molecular dynamics simulations of clusters made of sodium
atoms or C60 molecules, as well as simplified rate equation.

PACS numbers: 36.40.Qv,82.60.Qr,05.10.Ln

Boiling is often considered as archetypal of first-order
phase transitions in bulk matter. Recent experimental
evidence [1, 2, 3, 4] suggests that the liquid-gas tran-
sition also occurs in finite atomic systems. The caloric
curves measured for sodium [1], hydrogen [2] or stron-
tium [3] clusters exhibit a plateau or a backbending, be-
lieved to be signatures of a phase transition rounded by
size effects. Similar conclusions have been inferred from
collisions between gold nuclei [5]. The experiments per-
formed by Pochodzalla and coworkers have since moti-
vated a significant amount of theoretical work to help the
search for a possible equation of state for nuclear matter
[6, 7, 8, 9, 10].

For more than two decades, fragmentation has been
recognized as one of the most convenient ways of ac-
cessing fundamental cluster properties such as binding
energies or temperatures. These quantities were related
to each other through calorimetric experiments on the
solid-liquid phase change [11, 12]. The crucial role of the
observation time was also noticed at an early stage, and
more fully understood by Klots [13] who introduced the
concept of the evaporative ensemble. Free clusters are
never strictly stable when their energy exceeds a certain
dissociation threshold, as fragmentation will occur, pos-
sibly very late. Measurements on free clusters are thus
conducted on species resulting from hotter and bigger
clusters, and which have sufficiently cooled down so as
not to evaporate further. Unfortunately, the relatively
long times involved in experiments (usually the µs–ms
range) have prevented Klots’ ideas from being exploited
in later theoretical studies. While melting can be con-
veniently addressed using Monte Carlo (MC) or molecu-
lar dynamics (MD) simulations by artificially keeping the
cluster in a container [14], fragmentation of a cluster into
vacuum is an out-of-equilibrium phenomenon. The dif-
ficulty of accounting for the time variable has generally
been circumvented by considering lattice-gas or percola-
tion models [8, 10] as well as periodic boundary condi-
tions [6, 9].

Unimolecular rate theories provide a general frame-
work to describe single dissociation events accurately and
over long time scales [15]. Here we introduce a kinetic

Monte Carlo (KMC) scheme based on such rate theories
to calculate the caloric curves of clusters across the liquid-
gas transition for arbitrarily long observation times.

We start by illustrating the boiling problem by show-
ing the results of classical MD simulations carried out
on three selected clusters, namely Na55, (C60)40, and
a model binary cluster X13Y42. These systems are de-
scribed using an explicit many-body potential [16], the
Girifalco potential [17], and Lennard-Jones (LJ) interac-
tions, respectively. For the LJ cluster, we chose εXX = 1,
εYY = 1/2 and εXY = 1/

√
2, all distance units and

masses being set to one. For each cluster, MD trajectories
are performed starting from the lowest-energy minimum,
at increasing total energies and zero angular and linear
momenta. After some observation time t we determine
the biggest remaining cluster as the largest set of con-
nected atoms or molecules, two atoms being connected
when their distance is smaller than a cut-off value rcut

chosen as twice the equilibrium distance. The instanta-
neous temperature of this cluster is then calculated after
removing the overall translation and rotation contribu-
tions. The average cluster size and temperature obtained
over 100 independent trajectories (20 for the longest wait-
ing times) are represented for the three clusters in Fig. 1.

All caloric curves exhibit two clearly distinct regimes.
At low energies, the roughly linear increase of tempera-
ture characterizes the condensed phases as solidlike and
liquidlike. For the sodium and, to a lesser extent, for the
LJ cluster, a small inflection marks the onset of melt-
ing. At high energies, the cluster temperature drops and
reaches a plateau. The plateau temperature is lower and
the change between the two regimes is sharper as the
waiting time increases. This behavior is consistent with
the observed smaller average cluster size, and results from
a stronger evaporative cooling. In the cluster of fullerene
molecules, no evidence for the melting transition is seen
on the caloric curves, in agreement with the lack of sta-
bility of the liquid phase known in bulk C60 [18]. The
backbending seen for the shortest waiting time (0.5 ns)
was confirmed by another set of 100 independent MD
trajectories. However, without any container preventing
dissociation, it is hard to attribute this feature to melting
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FIG. 1: Caloric curves and average cluster size after various
waiting times in MD simulations. (a) and (b) Na55; (c) and
(d) (C60)40; (e) and (f) binary LJ cluster X13Y42. Cluster
sizes are given relative to the initial size.

or to boiling. The binary LJ cluster was constructed as
a two-layer icosahedron, with the most strongly bound
atoms X in the center. Provided that the waiting time is
long enough, X atoms may dissociate, but only after the
Y atoms have evaporated. The fragmentation of X atoms
is shown on the caloric curve corresponding to t = 10 ns
by the slight increase at high excitation energies.

The time-dependence of fragmentation caloric curves
can also be calculated from simple cluster models, sim-
ilar to those introduced by Bixon and Jortner for the
isomerization problem [19]. Our first assumption is that
clusters are heated adiabatically, allowing fragmentation
to occur through sequential loss of monomers [20]. We
use simple rate theories to describe each dissociation
step. The dissociation rate kn(En) of cluster Xn into
Xn−1 depends on the dissociation energy ∆n and the
total energy En through the harmonic RRK approach
[21], namely kn(En) = ν0(1 − ∆n/En)3n−6. This well
known formula contains a single time scale parameter
ν0, related to the typical vibrational period. Once evap-
oration has occured, the cluster loses a part of its in-
ternal energy, which is described more accurately us-

ing the Weisskopf theory [22]. The probability distri-
bution of the kinetic energy released (KER), pn(ε, En),
is pn(ε, En) ∝ ε(En − ∆n − ε)3n−7. The dissociation
of rigid molecules would be described similarly, changing
the factor ε and the number 3n−7 of degrees of freedom
to ε3/2 and 5n − 7 for linear molecules, and to ε2 and
6n − 7 for tridimensional molecules, respectively.

The problem can be further simplified by assuming
that the lifetime of the parent cluster is 1/kn and that
evaporative cooling removes the average KER 〈ε〉n =
2(E−∆n)/(3n−7), leading to the energy of the product
Xn−1, En−1 = En − ∆n − 〈ε〉n. The multifragmenta-
tion problem is thus reduced to computing all successive
dissociation rates, from which the survival probabilities
pn(t) of all cluster sizes are calculated following a master
rate equation dpn/dt = knpn − kn−1pn−1, solved exactly.
A similar “mean-field” technique was used by Hervieux et

al. to calculate branching ratios in the collision-induced
fragmentation of Na+

9 [23].

Beyond this approximate treatment, the kinetic Monte
Carlo method [24] accounts for the continuous character
of dissociation times and KER distributions. Starting
with the parent cluster size n at total energy En, the
evaporation rate kn(En) is calculated and the KER ε
is chosen randomly from the distribution pn(ε, En). The
energy is decreased by ∆n+ε, and the time is updated by
the quantity − log(ran)/kn, where 0 ≤ ran < 1 is a ran-
dom real number. This process is iterated until either the
waiting time has been exceeded or the remaining energy
is below the next dissociation limit. The final cluster has
k atoms and the energy Ek, its temperature is obtained
in the harmonic approximation kBTk = Ek/(3k − 6).

The KMC and mean-field methods have been com-
pared on the simplest case of the multiple dissociation
of a 100-particle model cluster with ∆n = 1 for all n.
Figs. 2(a) and (b) show the caloric curve and the av-
erage final cluster size obtained from the KMC calcula-
tions. The mean field values were not reported, as they
are undistinguishable from the stochastic data. It should
be noted that these results are not significantly affected
when the energetics of dissociation are described using
RRK theory, pn(ε, En) ∝ (En − ∆n − ε)3n−6.

The MD results of Fig. 1 are well reproduced by the
predictions of this simple model, especially the plateau
of the vapor phase and the increasing sharpness of the
transition for long observation times. The absence of any
feature on the caloric curve for t → 0 demonstrates the
kinetic character of the cluster liquid-gas transition. On
the other hand the asymptotic curve for t → ∞ exhibits
multiple tiny backbendings corresponding to consecutive
dissociations leaving the cluster perfectly cold. We have
simulated the effect of a more stable cluster at size n∗ =
90 by imposing ∆n∗ = 1.5. The influence of this magic
cluster on the curves of Figs. 2(c) and (d) is rather local.
The greater stability of the Xn∗ cluster induces a delay
on the subsequent dissociations, but the overall plateau
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FIG. 2: Caloric curves and average final cluster size obtained
from KMC calculations for model clusters without (a and b)
or with (c and d) a specially stable fragment at n = 90. The
waiting times are given in units of 1/ν0, and the cluster sizes
are relative to the initial size 100.

temperatures do not vary much.

The kinetic Monte Carlo method can be used in more
general situations, for which the rate equation approach
is not practical. Clusters with competing fragmentation
channels turn into products having different internal en-
ergies depending on their history. For instance, hetero-
geneous clusters XnYp can dissociate in multiple ways:

XnYp

ւ ց
Xn−1Yp XnYp−1

ւ ց ւ ց
· · · Xn−1Yp−1 · · ·

Statistically the Xn−1Yp−1 fragment does not have the
same energy depending on whether it was produced from
Xn−1Yp or from XnYp−1. For the above example, and
within the Weisskopf theory, do the two average energies
of the Xn−1Yp−1 product differ by

∆En−1,p−1 = 2(∆X − ∆Y)

× 3(n + p) − 12

[3(n + p) − 7] · [3(n + p) − 10]
, (1)

depending on which of X or Y was emitted first. Only
at large sizes or for similar binding energies ∆X ≃ ∆Y

the two fragmentation routes become equivalent. More-
over, clusters may be prepared at fixed temperature
rather than fixed energy. The initial energy is then ran-
domly picked from the canonical distribution ρn(E) ∝
E3n−6 exp(−E/kBT ) as the first Monte Carlo step.

By mimicking the actual dissociation cascade followed
by each individual cluster, the KMC technique offers a re-
alistic statistical description of multifragmentation. The
caloric curves of model binary clusters XnY100−n were
calculated assuming that X and Y atoms are bound to
the clusters by the energies ∆X = 1 and ∆Y = 1/2, re-
spectively. The caloric curves represented in Fig. 3(a) for
several compositions exhibit two steps, each associated
with the boiling of Y, then X particles. This two-step
liquid-gas transition is somewhat similar to the multi-
step melting process often seen in cluster simulations [25].
As more Y atoms are added, a larger energy is required
to evaporate them, therefore the gas transition of the
remaining X cluster is initiated at higher temperatures.
The different onsets of boiling for X and Y particles in
Fig. 1(c) and (d) confirm this two-step transition.
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FIG. 3: Final cluster (a) and gas (b) temperatures versus ini-
tial temperature in the boiling transition of model binary clus-
ters with various compositions, for the waiting time 106/ν0.

We now address possible definitions of the boiling tem-
perature, based on the previous results. The onset of the
drop in the slope of the caloric curve provides one possible
estimate. However, especially at short waiting times, the
variations of the average remaining cluster size seem to
be more reliable. Another observable consists of looking
at the kinetic energy of the evaporated atoms, in a fash-
ion somewhat more closely related to experimental con-
ditions. Using the same notation as above for the initial
and final cluster sizes and energies, and assuming that all
n − k evaporated atoms behave like a perfect gas, a gas
temperature can be defined by 3(n−k)kBT/2 = En−Ek.

The variations of the average gas temperature across
the boiling transition are shown in Fig. 3(d) for the model
binary clusters. Boiling is made evident by the sudden
increase of the gas temperature, which provides us with
another characterization of the liquid-gas point. The sec-
ond boiling point involving the more strongly bound X
atoms does not lead to significant variations of the gas
temperature, because X and Y atoms contribute equally
once in the gas phase. A better estimate of the liquid-gas
transition temperature of the cluster of X atoms is found
with the variations of its final size [see Fig. 1(d)].

The three aforementioned definitions of the boiling
point yield similar values in a broad range of situations
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FIG. 4: Boiling temperature of model 100-atom homogeneous
cluster versus waiting time. Inset: boiling temperatures of the
X and Y parts of model XnY100−n clusters versus composition
n, for the waiting time t = 106/ν0.

covered by our simple models. The dependence of the
observation time on the boiling temperature of the ho-
mogeneous cluster is represented in Fig. 4. As expected,
waiting longer favors evaporation, hence a lower boiling
temperature. In most experiments [1, 2, 3, 4] the waiting
time is at least 5 orders of magnitude larger than the typ-
ical vibrational period. Fig. 4 suggests that the results of
these experiments should remain stable by less than 5%
if the waiting time is doubled or halved. However, similar
measurements on trapped clusters might show some de-
viation since the trapping time may exceed seconds [26].

In Fig. 4 we also show how the presence of more weakly
bound (Y) atoms influence the boiling point of an (X)
cluster. The fragmentation temperature of Y atoms does
not significantly change with their initial composition.
However, as more Y atoms are added, the X product gets
progressively colder due to the more numerous evapora-
tions. This explains why the boiling temperature of the
X cluster decreases with its composition.

The KMC technique outlined in this paper could be
improved using more accurate unimolecular rate theo-
ries, such as Phase Space Theory, which incorporates an-
harmonic densities of states as well as a rigorous treat-
ment of angular momentum constraints [15]. The main
assumption of the present approach is that boiling in
slowly heated clusters occurs sequentially. Our simu-
lation results seem to validate this hypothesis. As in
glasses [27], the arbitrarily long time scales reached by
the present statistical approach make it a useful alterna-
tive to molecular dynamics. We believe that it forms a
bridge between unimolecular rate descriptions and multi-
fragmentation models that assume thermal equilibrium.

As a first application of the KMC method to the clus-
ter dissociation problem, we have considered the liquid-
gas transition. Our results emphasize the important role
played by the observation time on the caloric curves.

They also indicate that multiple-step boiling transitions
could be detected in heterogeneous clusters. Beyond
these examples, a more complete interpretation of recent
experiments [1, 2, 3], especially on clusters exhibiting
competing dissociation channels [4], could be anticipated.
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